Monday, May 27, 2013

วิวัฒนาการคอมพิวเตอร์

วิวัฒนาการคอมพิวเตอร์   
                            
       
          ค.ศ. 1884 : ดร.เฮอร์มาน ฮอลเลอริธ (Dr.Herman Hollerith) นักสถิติชาวอเมริกัน เป็นผู้คิดประดิษฐ์บัตรเจาะรูสำหรับเก็บข้อมูล โดยได้แนวคิดจากบัตรควบคุมการทอผ้าของ Jacquard และวิธีการหนีบตั๋วรถไฟของเจ้าหน้าที่รถไฟ นำมาดัดแปลงและประดิษฐ์เป็นบัตรเก็บข้อมูลขึ้น และทำการสร้างเครื่องคำนวณไฟฟ้าที่สามารถอ่านบัตรที่เจาะได้ ทำให้สามารถทำงานได้อย่างรวดเร็วและประหยัดค่าใช้จ่ายได้มาก
           เมื่อปี ค.ศ. 1880 สำนักงานสำรวจสำมะโนประชากรสหรัฐอเมริการได้ทำการสำรวจสำมะโนประชากรโดยใช้แรงงานคนในการประมวลผล ต้องใช้เวลาถึง 7 ปีครึ่งยังไม่แล้วเสร็จ ข้อมูลที่ได้ไม่แน่นอนและไม่ค่อยถูกต้อง ต่อมา ค.ศ. 1890 สำนักงานฯ จึงได้ว่าจ้าง ฮอลเลอริธ มาทำการประมวลผลการสำรวจ ปรากฏว่าเมื่อใช้เครื่องทำตารางข้อมูล (Tabulating machine) และหีบเรียงบัตร (Sorting) ของฮอลเลอริธแล้ว ใช้เวลาในการประมวลผลลดลงถึง 3 ปี
           ค.ศ. 1896 : ฮอลเลอริธ ได้ตั้งบริษัทผลิตและจำหน่ายอุปกรณ์การประมวลผลด้วยบัตรเจาะรู และต่อมาได้เปลี่ยนชื่อเป็นบริษัทไอบีเอ็ม (International Business Machines Corporation) ในปี ค.ศ. 1924           
                                                                                                          
                      

เครื่องเจาะบัตรของ
Herman Hollerith
                    

MARK 1
                      
    

          1937 : โฮเวิร์ด เอช ไอเคน (Professor Howard H. Aiken) ศาสตราจารย์ทางคณิตศาสตร์ แห่งมหาวิทยาลัยฮาร์วาร์ด (Harvard) เป็นผู้ออกแบบและสร้างเครื่องคำนวณตามหลักการของแบบเบจได้สำเร็จ โดยนำเอาแนวคิดของ Jacquard และ Hollerith มาใช้ในการสร้างและได้รับการสนับสนุนจากวิศวกรของบริษัทไอบีเอ็ม สร้างสำเร็จในปี ค.ศ. 1943 ในชื่อว่า Automatic Sequence Controlled Calculator (ASCC) หรือเรียกกันโดยทั่วไปว่า MARK I Computer นับเป็นเครื่องคำนวณเครื่องแรกของโลกที่ทำงานโดยอัตโนมัติทั้งเครื่อง จัดเป็น Digital Computer และเป็นเครื่องที่ทำงานแบบ Electromechanical คือเป็นแบบ กึ่งไฟฟ้ากึ่งจักรกล
          การส่งคำสั่งและข้อมูลเข้าไปในเครื่อง ใช้เทปกระดาษเจาะรู เครื่องมีขนาดใหญ่มาก ประกอบด้วยชิ้นส่วนต่าง ๆ ประมาณ 7 แสนชิ้น ใช้สายไฟยาวกว่า 500 ไมล์ ความยาวเครื่อง 55 ฟุต สูง 8 ฟุต กว้าง 3.5 ฟุต
          ใช้เวลาในการบวกหรือลบประมาณ 1/3 วินาที การคูณ 5 วินาที การหาร 16 วินาที นับว่าช้ามากถ้าเทียบกับปัจจุบัน เครื่อง MARK I ถูกนำมาใช้ทำงานตลอดวันตลอดคืนนานถึง 15 ปีเต็ม MARK I ยังไม่ใช่เครื่องคอมพิวเตอร์ตามแนวความคิดในปัจจุบันอย่างแท้จริง เป็นเพียงเครื่องคิดเลขไฟฟ้าขนาดใหญ่เท่านั้น แต่ถือว่าเป็นสิ่งที่น่าภูมิใจในขณะนั้น
          ค.ศ. 1943 : เจ เพรสเปอร์ เอ็คเคิร์ท (J. Presper Eckert) นักวิศวกรและ จอห์น มอชลี (John Mauchly) ศาสตราจารย์แห่งมหาวิทยาลัยเพนซิลวาเนีย ได้ช่วยกันสร้างเครื่องคำนวณอิเล็กทรอนิกส์โดยใช้หลอดสุญญากาศ (Vacuum Tube) สร้างสำเร็จในปี ค.ศ. 1946 นับเป็น เครื่องคำนวณอิเล็กทรอนิกส์เครื่องแรกของโลก เรียกว่า ENIAC (Electronic Numerical Integrator and Calculator)
          
          

ENIAC
                    ใช้หลอดสุญญากาศมากกว่า 18,000 หลอด ติดตั้งในห้องขนาด 20 X 40 ฟุต ตัวเครื่องทั้งระบบหนักเกือบ 30 ตัน บวกเลขได้ 5,000 ครั้งต่อวินาที การคูณและหารทำได้เร็ว 6 ไมโคร วินาที นับว่าเร็วขึ้นมาก เมื่อเปรียบเทียบการทำงานกับ MARK I แล้ว ถ้า ENIAC ทำงาน 1 ชั่วโมง จะเท่ากับเครื่อง MARK I ทำงานประมาณ 1 สัปดาห์ แต่การสั่งงานและการควบคุมยังต้องใช้สวิตช์และแผงเสียบปลั๊กทางสายไฟ ทุกครั้งที่เครื่องทำงานจะทำให้หลอดไฟฟ้าทั้งหมดสว่างขึ้น เป็นผลให้เกิดความร้อน หลอดไฟจึงมักจะขาดบ่อย ต้องตั้งเครื่องไว้ในห้องที่มีการปรับอุณหภูมิห้องให้เพียงพอ ENIAC เริ่มใช้งานในปี ค.ศ. 1946 และใช้งานประมาณ 10 จึงเลิกใช้     

          ในระหว่างนั้นเกิดสงครามโลกครั้งที่ 2 ทางการทหารสหรัฐอเมริกา ทำการวิจัยเกี่ยวกับโครงการสร้างลูกระเบิดปรมาณู ได้นำเอาเครื่อง MARK I และ ENIAC มาใช้ในโครงการนี้ด้วย แต่ต้องการเครื่องที่มีประสิทธิภาพสูงกว่า ค.ศ. 1945 ดร.จอห์น ฟอน นอยมานน์ (Dr.John Von Neumann) นักคณิตศาสตร์ นักตรรกวิทยา และนักฟิสิกส์ แห่งมหาวิทยาลัยปรินซ์ตัน พร้อม ร.ท.เฮอร์มาน โกลด์สไตน์ (Herman Goldstein) เจ้าหน้าที่สื่อสารกองทัพบกและอดีตศาสตราจารย์คณิตศาสตร์ แห่งมหาวิทยาลัยมิชิแกน และ ดร.อาเธอร์ เบิร์คส สมาชิกแผนกปรัชญาของมิชิแกน ได้ร่วมมือกันสร้างเครื่องคอมพิวเตอร์ที่สามารถเก็บคำสั่งการปฏิบัติงานทั้งหมดไว้ภายในเครื่องได้ เปลี่ยนแปลงข้อมูลและเปรียบเทียบได้ และใช้ระบบตัวเลขฐานสองภายในเครื่อง ชื่อว่า EDVAC (Electronic Discrete Variable Automatic Computer) และสร้างเสร็จในปี ค.ศ. 1952

แนวความคิดในการสร้างเครื่อง EDVAC ของนอยมานน์  มี 2 ประการ คือ
          1. ใช้ระบบเลขฐาน 2 ประกอบด้วยตัวเลข 0 และ 1 เรียกว่า บิท (bit = binary digit) ซึ่งสอดคล้องกับลักษณะของกระแสไฟฟ้า 2 ลักษณะคือ ไฟฟ้าเปิดและไฟฟ้าปิด
          2. คำสั่งและข้อมูลที่จะประมวลผล ควรเก็บไว้ในเครื่อง
            จากแนวความคิดเดียวกันนี้ เอ็ม. วี. วิลคส์ (M.V. wilkes) นักคณิตศาสตร์และนักวิทยาศาสตร์แห่งมหาวิทยาลัยเคมบริดจ์ ประเทศอังกฤษ ได้สร้างเครื่อง EDSAC (Electronic Delay Storage Automatic Computer) สำเร็จในปี ค.ศ. 1949 เป็นเครื่องคอมพิวเตอร์เครื่องแรกที่สามารถเก็บโปรแกรมไว้ภายในเครื่องได้ ของอังกฤษ มีลักษณะการทำงานเหมือนกับ EDVAC แต่ใช้เทปแม่เหล็กสำหรับบันทึกข้อมูล ซึ่งเป็นวิธีการที่เร็วกว่าการใช้บัตรเจาะรู และเป็นสื่อบันทึกข้อมูลที่นิยมใช้ในอังกฤษ
           ดังนั้น EDVAC ถือได้ว่าเป็นคอมพิวเตอร์ต้นแบบของการสร้างคอมพิวเตอร์ทั้งหมด และอาจถือได้ว่าเป็นคอมพิวเตอร์เครื่องแรกของโลก (ในประเทศอังกฤษถือว่า EDSAC เป็นคอมพิวเตอร์เครื่องแรกของโลก เนื่องจากว่า EDSAC สร้างเสร็จก่อน แม้ว่าจะสร้างทีหลังก็ตาม)
           ค.ศ. 1949 : หลังจากที่มอชลีและเอ็คเคิร์ท ได้ร่วมมือกันจัดตั้งบริษัทผลิตคอมพิวเตอร์ออกขาย แต่ประสบปัญหาทางการเงิน จึงขายกิจการให้กับบริษัท Speery Rand Corporation และได้ร่วมมือกันสร้างเครื่องคอมพิวเตอร์ UNIVAC I (Universal Automatic Computer I) สำเร็จในปี ค.ศ. 1951 โดยใช้เทปแม่เหล็กเป็นสื่อบันทึกข้อมูล นับว่าเป็นคอมพิวเตอร์สำหรับใช้งานทางธุรกิจเป็นเครื่องแรกของโลก โดยติดตั้งให้กับบริษัท General Electric Appliance ในปี ค.ศ. 1954 ต่อมาบริษัท Speery Rand Corporation เปลี่ยนชื่อเป็น บริษัทยูนิแวคและยูนิซิส จนกระทั่งบริษัทไอบีเอ็ม ได้ก้าวเข้าสู่วงการคอมพิวเตอร์ และได้พัฒนาเครื่องคอมพิวเตอร์จนเจริญก้าวหน้ามาตามลำดับ
    
                

EDVAC คอมพิวเตอร์ต้นแบบเครื่องแรกของโลก
                    


UNIVAC I
                      
          1953 : บริษัทไอบีเอ็ม สร้างเครื่องคอมพิวเตอร์เครื่องแรกคือ IBM 701 และในปี ค.ศ. 1954 สร้างเครื่อง IBM 650 และเป็นแบบที่ใช้กันแพร่หลายในระยะ 5 ปีต่อมา เป็นเครื่องที่ใช้หลอดสุญญากาศ ต่อมาปรับปรุงดัดแปลงมาใช้วงแหวนแม่เหล็ก (Magnetic Core) เป็นวงแหวนเล็ก ๆ โดยจัดวางชิดกันเป็นแผ่นคล้ายรังผึ้ง เวลาเครื่องทำงาน ความร้อนจึงไม่สูง และเมื่อมีการนำทรานซิสเตอร์มาใช้แทนหลอดสุญญากาศ ทำให้สามารถลดขนาดเครื่องลงได้มาก ความร้อนลดลง ไม่เปลืองเนื้อที่ภายในเครื่อง ต้นปี ค.ศ. 1964 บริษัทไอบีเอ็ม สร้างเครื่อง IBM System 360 ใช้หลักไมโครอิเล็กทรอนิกส์ มีความในการทำงานสูงขึ้น ขนาดของเครื่องเล็กลง และมีระบบหน่วยความจำที่ดีกว่าเดิม
คอมพิวเตอร์ได้รับการพัฒนาอย่างต่อเนื่องจากหลาย ๆ กลุ่ม เทคโนโลยีที่ก้าวหน้า วิทยาการที่นำสมัย ทำให้คอมพิวเตอร์เป็นที่ต้องการมากขึ้น การปรับปรุงเปลี่ยนแปลงเทคโนโลยีคอมพิวเตอร์ทำให้คอมพิวเตอร์สามารถตอบสนองความต้องการของผู้ใช้ได้มากขึ้น คอมพิวเตอร์ในปัจจุบันจึงมีประสิทธิภาพสูง ขนาดของเครื่องเล็กลง ราคาถูก เป็นที่นิยมใช้กันทั่วไป และในอนาคตคาดว่า คอมพิวเตอร์ จะกลายเป็นอุปกรณ์ที่มีความจำเป็นในการใช้งานเช่นเดียวกับเครื่องไฟฟ้าในบ้านประเภทอื่น ๆ

RAM คืออะไร RAM (Random Access Memory)

RAM คืออะไร


         RAM (Random Access Memory) เป็นสถานที่ในเครื่องคอมพิวเตอร์ ซึ่งระบบปฏิบัติการโปรแกรมประยุกต์ และข้อมูลที่คำสั่งใช้งานเก็บไว้เพื่อทำให้ ไมโครโพรเซสเซอร์นำไปประมวลผลได้อย่างรวดเร็ว RAM เป็นที่เก็บที่สามารถผ่านและเขียนได้รวดเร็วกว่าที่เก็บชนิดอื่น ของเครื่องคอมพิวเตอร์ , ฮาร์ดดิสก์ , ฟล็อปบี้ดิสก์ และ ซีดี - รอม อย่างไรก็ตามการเก็บข้อมูลไว้ใน RAM ทำได้เมื่อมีการใช้เครื่องคอมพิวเตอร์
RAM สามารถเปรียบเทียบได้กับความจำระยะสั้นของคน และฮาร์ดดิสก์ เหมือนกับหน่วยความจำระยะยาว หน่วยความจำระยะสั้นจะสนใจกับงานบนมือ แต่สามารถเก็บข้อเท็จจริงหลายอย่างในเวลาเดียวกัน ถ้าหน่วยความจำระยะสั้นถูกใช้จนเต็มแล้ว บางครั้งสมองสามารถ refresh โดยการดึงข้อเท็จจริง (fact) ในหน่วยความจำระยะยาวออกมา คอมพิวเตอร์ทำงานในลักษณะเดียวกัน ถ้า RAM ถูกใช้จนเต็มแล้ว ไมโครโพรเซสเซอร์ต้องไปที่ฮาร์ดดิสก์ เพื่อเรียกข้อมูลออกมาและเขียนทับ (Overlay) ด้วยข้อมูลใหม่ เป็นการทำให้เครื่องคอมพิวเตอร์ทำงานช้าลง แตกต่างจากฮาร์ดดิสก์ ที่มีข้อมูลอย่างสมบูรณ์ RAM จะไม่ทำงานมากกว่าขนาดหน่วยความจำ ซึ่งจะทำให้การทำงานช้าลง
ขนาด RAM
RAM ได้รับการเรียกว่า Random access - การเข้าถึงแบบสุ่ม เพราะตำแหน่งในการเก็บสามารถเข้าถึงโดยตรงที่จุดเริ่มต้น ทำให้มีการแยกมาจากหน่วยจำหลักปกติประเภท off line โดยปกติเทปแม่เหล็ก (Magnetic tape) จะให้ส่งข้อมูลได้โดยเริ่มจากจุดเริ่มต้นของเทป และจากตำแหน่งต่อเนื่อง บางครั้งสามารถเรียกได้ว่า “ หน่วยความจำแบบไม่อนุกรม (Non Sequential Memory)” เพราะ RAM การเข้าถึงไม่มีลักษณะสุ่ม แต่ RAM ได้รับการจัดลักษณะและควบคุมให้ข้อมูลสามารถเก็บ และเรียกได้โดยตรงที่ตำแหน่ง (IBM มักจะเรียกว่า หน่วยความจำแบบเข้าถึงโดยตรง) โดยตัวเก็บลักษณะอื่น เช่น ฮาร์ดดิสก์ และซีดี - รอม สามารถเข้าถึงโดยตรง ( แบบสุ่ม ) แต่คำว่า random ไม่ได้ใช้กับการใช้กับตัวเก็บเหล่านี้
นอกจากดิสก์ ฟล็อปปี้ดิสก์ และซีดี - รอมแล้ว ตัวเก็บที่สำคัญอีกชนิด คือ Read-only-memory (ROM) และหน่วยความจำราคาแพงอื่น ๆ จะเก็บข้อมูลไว้ได้เมื่อปิดเครื่องคอมพิวเตอร์ โดยคอมพิวเตอร์ทุกเครื่องจะมี ROM ขนาดเล็กที่เพียงพอสำหรับการเก็บโปรแกรม ซึ่ง ระบบปฏิบัติการสามารถโหลดมาที่ RAM ทุกครั้ง เมื่อเปิดเครื่องคอมพิวเตอร์
การทำงานของ RAM โดยสังเขป
โดยทั่วไป RAM คล้ายกับกล่องไปรษณีย์ (Post-office box) โดยแต่ละกล่องสามารถเก็บค่า 0 และ 1 แต่ละกล่องจะมีตำแหน่งที่เป็นเอกลักษณ์ (Unique address) สามารถหาได้โดยการนับแนวคอลัมน์ แล้วนับตามแถวใน RAM ซึ่ง Post-office คือ ฮาร์ดแวร์ และแต่ละกล่องคือ เซลล์ ในการค้นหารายการของกล่อง ( เซลล์ ) ตัวควบคุม RAM จะส่งตำแหน่งของคอลัมน์ / แถวไปตามสายไฟฟ้าบาง ๆ ไปที่ Chip มี address line ของแต่ละแถวและแต่ละคอลัมน์ในกลุ่มของกล่อง ถ้าข้อมูลกำลังถูกอ่าน บิต (bits) ที่ถูกอ่านจะไหลไปตาม data line ของ RAM โมดูลหรือ Chip ที่เขียน ( ระบุ ) เป็น 256 K x 16 หมายถึง 256,000 คอลัมน์ และลึก 16 แถว ขนาด 8 MB ของ RAM แบบ Dynamic (DRAM) บรรจุคาปาซิเตอร์ 8 ล้านตัว และทรานซิสเตอร์ 8 ล้านตัว และพาร์ทที่ต่อเชื่อม
RAM แบบ Dynamic (DRAM – ดีแรม ) แต่ละเซลล์จะชาร์ตในส่วนที่คล้ายกับคาปาซิเตอร์ ทรานซิสเตอร์ทำหน้าที่เป็นเกท (gate) ในการหาค่า อ่านค่า หรือเขียนค่าของคาปาซิเตอร์ ส่วน RAM แบบ Static (SRAM), แทนที่จะใช้การชาร์ตของคาปาซิเตอร์ แต่จะใช้ตัวทรานซิสเตอร์ที่เป็นสวิทซ์ แบบ flip/flop โดยตำแหน่งหนึ่งมีค่าเป็น 1 อีกตำแหน่งจะเป็น 0 ลักษณะภายนอก RAM เป็นชิปที่ติดมากับแผ่น เมนบอร์ดของเครื่องคอมพิวเตอร์ ซึ่งจำนวนของ RAM สามารถเพิ่มได้โดยการเสียบเพิ่มที่ Socket บนเมนบอร์ด การเพิ่ม RAM ทำได้ตามข้อกำหนดการคอนฟิก ได้แก่ หน่วยความจำแบบแถวเดียว (Single in-line memory modules-SIMM)หรือหน่วยความจำแบบแถวคู่ (Dual in-line memory modules-DIMM) เพราะ DIMM มีพินแบบ 64 บิต สามารถแทนที่ SIMMS แบบ 36 บิต ถ้ามีการใช้ Synchronous DRAM ส่วนคอมพิวเตอร์แบบโน๊ตบุ๊คใช้ DIMMS แบบ 32 บิต ที่เรียกกันว่า Small outline DIMMS (SO DIMMS)
การเข้าถึงข้อมูล
เมื่อไมโครโพรเซสเซอร์ เรียกคำสั่งต่อไปมาทำงาน คำสั่งจะบรรจุตำแหน่งของหน่วยความจำที่สามารถอ่านข้อมูลได้ ( นำไปที่ไมโครโพรเซสเซอร์สำหรับการประมวลผลต่อไป ) ตำแหน่งนี้จะส่งไปที่ตัว RAM Controller ซึ่ง RAM Controller จะจัดการตามคำขอและส่งตำแหน่งที่ต้องการ เพื่อทำให้ทรานซิสเตอร์ เปิดเซลล์ ให้อ่านข้อมูลจากคาปาซิเตอร์ (คาปาซิเตอร์ ที่ได้รับการชาร์ตจะให้ค่าเป็น 1 และค่าชาร์ตต่ำ จะให้ค่าเป็น 0) สำหรับ RAM แบบ Dynamic จะมีการ power refresh เพื่อตรวจว่าค่าที่จะผ่านมีจริงก่อนอ่านค่าจากคาปาซิเตอร์ ใน RAM บางประเภท หน่วยของข้อมูลที่เรียก เพจ ได้รับการอ่านข้อมูลที่ถูกอ่านจะถูกส่งไปตาม Data line ไปที่ data buffer ของไมโครโพรเซสเซอร์ ซึ่งรู้จักในชื่อว่า Level-1 Cache ( แคชระดับที่ 1) และตัวสำเนาจะส่งไปที่ Level-2 Cache ( แคช ระดับที่ 2) สำหรับ RAM แบบ VIDEO (Video RAM) มีกระบวนการคล้ายกับ DRAM ยกเว้น Video RAM บางแบบ ที่ขณะเขียนข้อมูลโดยไมโครโพรเซสเซอร์ ข้อมูลยังสามารถอ่านโดย Video controller ในเวลาเดียวกัน
เวลาที่ RAM ใช้ในการอ่านและเขียน โดย ไมโครโพรเซสเซอร์ แต่ละครั้งเรียกว่าเวลาในการเข้าถึง ( Access time ) มีตั้งแต่ 9 nano second ถึง 70 nano second ซึ่งค่ายิ่งน้อยยิ่งดี แสดงว่าการนำข้อมูลออกมาทำได้เร็ว
เวลาในการเข้าถึง ประกอบด้วย เวลาแฝง และเวลาการส่ง เวลาแฝง หมายถึง เวลาการให้สัญญาณและการ refresh ข้อมูลภายหลังการอ่าน ชนิดของ RAM
RAM สามารถแบ่งออกเป็น 2 ชนิด คือ
  1. RAM หลัก (main RAM) สำหรับเก็บข้อมูลทุกประเภทและทำให้ CPU เรียกใช้ได้อย่างรวดเร็ว
  2. RAM แบบ Video (Video RAM) เก็บข้อมูลสำหรับจอภาพ ทำให้ภาพไปที่จอได้เร็วขึ้น
RAM หลัก (main RAM)
RAM หลักแบ่งออกเป็น Static RAM (SRAM) และ Dynamic RAM (DRAM)
Static RAM (SRAM): SRAM มีราคาสูง และใช้พื้นที่เป็น 4 เท่าของ DRAM ในการเก็บข้อมูลที่เท่ากัน มีความแตกต่างจาก DRAM ในเรื่องการใช้ power-refresh ทำให้การเข้าถึงทำได้เร็วกว่า (SRAM มี เวลาในการเข้าถึง 25 nano seconds ในขณะที่ DRAM ใช้ถึง 60 nano seconds ซึ่ง DRAM ได้มีการพัฒนาความเร็วของการเข้าถึงข้อมูล ) SRAM ได้รับการใช้โดยส่วนใหญ่เป็นแคชระดับ 1 และ ระดับ 2 ซึ่ง CPU จะติดต่อกับ SRAM (Cache) ก่อนที่จะติดต่อกับ DRAM
  • Burst (or Synch Burst) Static RAM
    Burst SRAM ( หรือที่รู้จักกันว่า Synch Burst VRAM) จะ Synchronize กับนาฬิกาของระบบ หรือในบางกรณีกับ cache bus ของนาฬิกา ทำให้สามารถ Synchronize ได้ง่ายกับอุปกรณ์ต่าง ๆ ลดเวลาการคอย สามารถนำไปใช้เป็นหน่วยความจำแบบ External level -2 cache สำหรับ Chipset ของ Pentium II
Dynamic RAM (DRAM): DRAM ใช้คาปาซิเตอร์ที่ต้องการ power-refresh เพื่อเก็บการชาร์ต เพราะการอ่าน DRAM จะดิสชาร์ตสิ่งที่เก็บไว้ ความต้องการ Power-refresh ภายหลังการอ่านแต่ละครั้ง นอกจากการอ่านแล้ว เป็นการรักษาชาร์ตให้อยู่ในตำแหน่ง RAM จะต้องมีการ refreshed ทุก ๆ 1.5 microsecond และ DRAM มีราคาถูกที่สุดในประเภทของ RAM
  • Fast Page Mode (FPM DRAM)
    เป็นรูปแบบใหม่ของ RRAM โดย Fast Page Mode DRAM (FPM DRAM) เป็นประเภทธรรมดาของ DRAM ในเครื่องคอมพิวเตอร์ส่วนบุคคล Page Mode DRAM มีลักษณะสำคัญของการเข้าถึง คือ แถวของหน่วยความจำไม่ต้องกำหนดแถวใหม่ สัญญาณของ row access strobe (RAS) จะแอคทีฟเพื่อให้สัญญาของ column access strobe (CAS) มีการเปลี่ยนการอ่านลำดับของเซลล์ เป็นการลดเวลาการเข้าถึง และใช้พลังงานต่ำ Clock timing ของ FPM DRAM จะเป็น 6-3-3-3(3 clock cycle สำหรับการตั้งค่า การเข้าถึง 3 clock cycle สำหรับลำดับแรกและแต่ละครั้งของการแอ็คเซสต่อเนื่องกัน 3 ครั้ง ขึ้นกับการตั้งค่าเริ่มต้น
  • Enhanced DRAM
    Enhanced DRAM (EDRAM) เป็นการรวม SRAM และ DRAM เป็นแพคเกจเดียวกัน ปกติมักจะใช้เป็นแคช ระดับ 2 รูปแบบส่วนส่วนใหญ่ จะใช้ 256 ไบต์ของ SRAM รวมเข้ากับ DRAM ข้อมูลในการอ่านครั้งแรกจะอ่านจาก SRAM (ด้วยเวลา 15 nanoseconds) ถ้าไม่พบจึงจะไปอ่านจาก DRAM ด้วยเวลา 35 nanoseconds)
  • Extended Data Output RAM หรือ DRAM (EDO RAM หรือ EDO DRAM)
    EDO RAM หรือ EDO DRAM มีความเร็วสูงขึ้น 25% เมื่อเทียบกับ DRAM มาตรฐาน และเป็นการลดความต้องการใช้หน่วยความจำ แคชระดับ 2
  • Burst Extended Data Out put DRAM (BEDO DRAM)
    BEDO RAM ปรับปรุง page mode ของ DRAM โดยใช้การสร้างการเลื่อนตำแหน่งคอลัมน์ที่ต่อเนื่องกัน 3 ครั้ง หลังจากคอลัมน์แรกได้รับการระบุ โดย 4 บิต จะถูกอ่านแบบ Brust ใช้ร่วมกับสถาปัตย์กรรมแบบ Dual bank DEDO DRAM ใช้เวลาการเข้าถึงเป็น 4-1-1-1 แต่ Intel และผู้ผลิตรายอื่นนิยมใช้ SDRAM ทำให้ BEDO DRAM ไม่ได้รับการใช้งานมากนัก
  • Nonvolatile RAM (NVRAM)
    NVRAM เป็น RAM ประเภทพิเศษที่สามารถเก็บข้อมูลไว้ได้ เมื่อปิดเครื่องคอมพิวเตอร์ หรือว่าไฟตกคล้ายกับหน่วยความจำแบบ ROM (Read-only memory) โดยใช้พลังงานจากแบตเตอรี่ ภายในเครื่องคอมพิวเตอร์ มันสามารถทำงานโดยเขียนข้อมูลและฟื้นฟูจาก EEPROM
  • Synchronous DRAM (SDRAM)
    SDRAM เป็นชื่อทั่วไป สำหรับ DRAM ประเภทต่าง ๆ ที่ใช้การ Synchronized กับความเร็วนาฬิกาของไมโครโพรเซสเซอร ์เพื่อทำให้มีค่าเหมาะสม แนวโน้มนี้เป็นการเพิ่มจำนวนคำสั่ง ให้การทำงานของไมโครโพรเซสเซอร์ ความเร็วของ SDRAM มีอัตราเป็น MHz แทนที่จะเป็น ns พื่อทำให้สามารถเปรียบเทียบระหว่างความเร็วของบัส และความเร็ว RAM chip โดยการแปลงความเร็วนาฬิกาของ RAM เป็น ns หารด้วยความเร็วของชิป 1 พันล้าน ns เช่น 83 MHz RAM เทียบเท่ากับ 12 ns
  • JEDEC SDRAM
    JEDEC (Joint Electron Device Engineering Council) SDRAM เป็นมาตรฐานในการผลิต Synchronous DRAM เป็นการใช้สถาปัตยกรรมแบบ dual bank และการเข้าถึงแบบหลาย brust mode ซึ่งสามารถกำหนดไว้ก่อน ชิปแบบ JEDEC DRAM ทำงานได้ที่ 83 MHz หรือ 100 MHz โดย JEDEC DRAM เป็นที่รู้จักกันในชื่อ PC66 SDRAM เพราะความเร็วที่ใช้ครั้งแรกสำหรับการทำงานกับบัสที่ 66 MHz และมีความโดดเด่นจากสถาปัตยกรรม แบบ PC100 ของ Intel
  • PC100 SDRAM
    PC100 SDRAM เป็น SDRAM ที่ Intel ระบุเป็นข้อกำหนด และ Intel ได้สร้างมาตรฐานนี้เพื่อให้ผู้ผลิต RAM ผลิตชิปให้สามารถทำงานได้กับ Chipset รุ่น i440BX ของ Intel ซึ่ง i440BX ได้รับการออกแบบให้สามารถทำงานกับระบบบัสความเร็ว 100 MHz โดย PC100 SDRAM ทำงานที่ความเร็ว 100 MHz ด้วยรอบการเข้าถึงที่ 4-1-1-1 และมีรายงานกล่าวว่า สมรรถนะของ PC100 SDRAM สูงขึ้น 10-15% ในระบบ Socket 7 ของ Intel (แต่ไม่ใช่ Pentium II เพราะ cache level 2 จะทำงานเพียงครึ่งหนึ่งของความเร็วไมโครโพรเซสเซอร์)
  • Double Data Rate SDRAM (DDR SDRAM)
    DDR SDRAM ในทางทฤษฎีสามารถทำให้ RAM มีความเร็วอย่างต่ำ 200 MHz มันจะกระตุ้นผลลัพธ์ (Output) ทั้งด้าน Rising และ Falling ของ System clock ไม่ใช่เฉพาะด้าน Rising ทำให้เพิ่มศักยภาพผลลัพธ์เป็นสองเท่า ได้รับการคาดหวังว่าผู้ผลิต Chipset ของ Socket 7 สามารถสนับสนุน SDRAM แบบนี้
  • Enhonced SDRAM (ESDRAM)
    ESDRAM ทำโดยใช้ระบบหน่วยงานแบบ Enhance โดยการเพิ่ม Static RAM (SRAM) เล็ก ๆ ที่ชิป SDRAM มีความหมายว่าการเข้าถึงหลาย ๆ ครั้งจะเร็วขึ้น โดยรูปแบบของ SARM ในกรณีที่ SRAM ไม่มีข้อมูล ใช้บัสขนาดกว้างระหว่าง SRAM และ SDRAM เพราะอยู่บนชิปเดียวกัน ESDRAM ได้เกิดมาเป็นคู่แข่งของ DDR SDRAM ในฐานะชิป SDRAM ที่เร็วกว่า สำหรับไมโครโพรเซสเซอร์แบบ Socket 7
  • Direct Rambus DRAM (DRDRAM)
    Direct Rambus DRAM เป็นเทคโนโลยีที่เสนอโดย Rambus Inc. ซึ่งเป็นหุ้นส่วนของ Intel มีการสัญญาว่าจะทำให้ RAM มีความเร็วสูงถึง 800 MHz โดยจะมีบัสขนาดเล็กกว่าการออกแบบของ SDRAM ในปัจจุบัน (ใช้ขนาด 16 บิต เปรียบเทียบกับ 64 บิต ของ SDRAM)
  • SyncLink DRAM (SLDRAM)
    SyncLink DRAM (มีลักษณะคล้ายกับ Direct Rambus DRAM) เป็นการใช้หลักการแบบ Protocol-based ในการใช้วิธีนี้ สัญญาณทั้งหมดของ RAM จะเป็นสิ่งเดียวกัน (ไม่เหมือนกับการแยก CAS, RAS. ตำแหน่งและ data link) เพราะเวลาการเข้าถึงไม่ขึ้นกับการ Synchronize แบบมัลติไลน์ SLDRAM สัญญาว่าจะทำให้ความเร็ว RAM สูงถึง 800 MHz เช่นเดียวกับ Double Data Rate SDRAM, โดย SLDRAM สามารถทำงานเป็นสองเท่าของอัตราความเร็วนาฬิการะบบ Synclink เป็นมาตรฐานอุตสาหกรรมแบบเปิด ซึ่งคาดว่าจะแข่งขันและบางทีเป็นต่อเหนือ Direct Rambus DRAM
Video RAM
Video RAM ในฐานะ “video RAM” หมายถึงแบบทุกแบบของ RAM ที่ใช้ในการเก็บข้อมูลประเภทภาพ (image) สำหรับการแสดงภาพบนจอภาพ แต่ด้วยความสับสนทำให้ประเภททั่วไปของ Video RAM ทุกประเภทเป็น DRAM ที่ใช้งานด้วยการจัดการแบบพิเศษ video RAM ทำหน้าที่เป็นบัฟเฟอร์ระหว่างไมโครโพรเซสเซอร์กับจอภาพ และมักจะเรียกกว่าเฟรมบัฟเฟอร์ เมื่อภาพถูกส่งไปที่จอ ( ภาพเหล่านี้ ) จะถูกอ่านโดย ตัวประมวลผลในรูปแบบของข้อมูลที่เก็บหลักของ RAM จากนั้นจะเขียนที่ video RAM จาก Video RAM ( เฟรมบัฟเฟอร์ ) ข้อมูลจะถูกแปลงโดย RAMDAC เป็นสัญญาณอนาล็อก เพื่อส่งไปแสดงผลด้วยกลไกการแสดงภาพ เช่น หลอดคาร์โทด (CRT) โดยปกติ video RAM จะติดตั้งมาด้วยขนาด 1 – 2 MB และอยู่ที่การ์ด video หรือกราฟฟิคในเครื่องคอมพิวเตอร์ รูปแบบส่วนมากของ video RAM มักจะเป็น Dual Port ขณะที่หน่วยประมวลผลกำลังเขียนภาพใหม่ จอภาพจะอ่านข้อมูลจาก video RAM เพื่อเตรียมภาพต่อไป การออกแบบเป็น Dual Port เป็นสิ่งแตกต่างที่สำคัญระหว่าง Main RAM กับ video RAM
  • RAMDAC
    RAMDAC (randomaccess memory digital to analog converte) เป็นไมโครชิป RAMDAC จะติดตั้งใน video adapter ในเครื่องคอมพิวเตอร์ มันจะรวม SRAM ขนาดเล็กเพื่อใช้เก็บตารางสีกับตัวแปลงสัญญาณดิจิตัล 3 เป็นอานาล็อก เพื่อเปลี่ยนภาพแบบดิจิตัลให้เป็นข้อมูลอะนาล็อก สำหรับส่งไปที่ตัวให้กำเนิดสีจอภาพ (display is color qenerator) ได้แก่ แม่สีคือ แดง เขียง และน้ำเงิน ในจอภาพที่ใช้หลอดภาพคาโทด (CRT) สัญญาณอะนาล็อกจะไปที่ยืนดิเลคตรอน แต่ละตัวในจำนวน 3 ตัว ถ้าจอภาพเป็นเทคโนโลยีอื่น สัญญาณจะส่งที่ตรงกับกลไกประเภทนั้น
    ส่วน SRAM ของ RAMDAC บรรจุตารางสี หมายเลขสีในข้อมูลแบบดิจิตัลที่ส่งมาที่ SRAM จะใช้สำหรับการสร้างเป็น 3 ค่า สำหรับสีแดง เขียวและน้ำเงิน เพื่อให้เกิดผลลัพธ์ไปที่ตัวแปลงสัญญาณ Digital-to-analog สัญญาณอะนาล็อกจากตัวแปลงสัญญาณ จะส่งโดยตรงไปยังปืนอิเลคตรอน หรือกลไกของ Image projecting สำหรับการแสดงสีจริง ข้อมูลสีดิจิตัลถูกส่งโดยส่งไปที่ DAC โดยไม่ผ่านตราราง SRAM เพราะไม่มีความจำเป็น
  • Video RAM (VRAM)
    VRAM ( เป็นอีกชื่อหนึ่งของ Video RAM) มีพอร์ทแบบ Dual port ซึ่งยินยอมให้หน่วยประมวลผลเขียนข้อมูลที่ Video RAM ในเวลาเดียวกันที่ทำการ Refresh จอภาพ
  • Synchronous Graphics RAM
    Synchronous Graphics RAM (SG RAM) เป็น RAM แบบ clock- Synchronized ที่ใช้กับหน่วยความจำ วิดีโอราคาต่ำ SGRAM ใช้การเขียนแบบ Masked write ซึ่งทำให้สามารถเลือกข้อมูลไปปรับปรุงในการทำงาน และใช้การเขียนแบบ Block write ซึ่งยินยอมให้ข้อมูลของ black ground หรือ foreground ได้รับการจัดการที่มีประสิทธิภาพ SGRAM เป็นพอร์ทเดี่ยว (single port) เป็นส่วนพิเศษของหน่วยความจำวิดีโอ ที่ทำความเร็วเพิ่มขึ้นระดับปานกลาง
  • Window RAM
    Window RAM (WRAM) ไม่เกี่ยวข้องกับ Microsoft Windows เป็น video RAM ที่มีสมรรถนะสูงมาก มีพอร์ทคู่ (dual ported) และมี bandwidth กว้างขึ้น 25% เมื่อเทียบกับ VRAM แต่มีราคาถูกกว่า WRAM มีส่วนทำให้มีประสิทธิภาพในการอ่านข้อมูล สำหรับการเติมบล็อค และการวาดข้อความ (Text drawing) โดยสามารถใช้สำหรับภาพความละเอียดสูง เช่น 1600 x 1200 pixels สำหรับการแสดงภาพสีจริง
  • Maltibank Dynamic RAM
    Maltibank Dynamic RAM (MDRAM) เป็น RAM ที่มีสมรรถนะสูง พัฒนาโดย Mosys โดยการแบ่งหน่วยความจำเป็น 32Kb ส่วน หรือ bank ซึ่งสามารถเข้าถึงโดยอิสระ video RAM แบบปกติ เป็นแบบ Monolithic การเข้าถึงเฟรมบัฟเฟอร์ เป็นการเข้าถึงเพียงครั้งเดียว การใช้หน่วยความจำแบบส่วนอิสระจะยินยอมให้การเข้าถึงพร้อม ๆ กันได้ เป็นการเพิ่มสมรรถนะ และมีราคาถูก เพราะไม่เหมือนกับ video RAM แบบอื่น การ์ดสามารถผลิตให้ตรงกับลักษณะของ RAM สำหรับความสามารถในการให้ความละเอียด แทนที่จะต้องการหลายเมกกะไบต์
  • Rambus Dynamic RAM
    Rambus Dynamic RAM (RDRAM) เป็น video RAM ที่ออกแบบโดย Rambus ด้วยการทำให้บัสมีความเหมาะสม เพื่อเพิ่มความเร็วในการไหลระหว่าง video RAM และ buffer ของเฟรม
ข้อมูลจาก : widebase.net

Rom และ Ram คืออะไร และต่างกันอย่างไร ?

Rom และ Ram คืออะไร
Ram <Random Access Memory>
แรม เป็นหน่วยความจำหลักที่จำเป็น สามารถเก็บข้อมูลได้เฉพาะเวลาที่มีกระแสไฟฟ้าหล่อเลี้ยงเท่านั้น หากไม่มีกระแสไฟฟ้ามาเลี้ยงข้อมูลที่เก็บไว้จะหายไปทันที
    หน่วยความจำแรม ทำหน้าที่เก็บชุดคำสั่งและข้อมูลที่ระบบคอมพิวเตอร์ทำงานอยู่ โดยหน้าที่ของ หน่วยความจำหลักแรมแบ่งออกเป็น 4 ส่วนดังนี้
  1. Input Storage Area เป็นส่วนที่เก็บข้อมูลนำเข้า เพื่อรอประมวลผล
  2. Working Storage Area เป็นส่วนที่เก็บข้อมูลระหว่างประมวลผล
  3. Output Storage Area เป็นส่วนที่เก็บผลลัพธ์ที่ได้จากการประมวลผล
  4. Program Storage Area เป็นส่วนเก็บชุดคำสั่ง เพื่อใช้คอมพิวเตอร์ปฏิบัติคำสั่ง
  แรมหลายชนิดข้อมูลจะหายไปหากปิดเครื่อง แต่ปัจจุบันมักเก็บข้อมูลบิตในรูปของประจุไฟฟ้าในตัวเก็บประจุ
Ram

Rom <Read Only Memory>
รอม เป็น หน่วยความจำถาวร ที่เก็บข้อมูลไว้ในคอมพิวเตอร์ได้แม้ว่าจะไม่มีประจุไฟฟ้ามาหล่อเลี้ยงก็ตาม จุดประสงค์หลักๆของรอมคือการเก็บข้อมูลสำคัญๆไว้ เพื่อป้องกันการถูกเล่นงานจากไวรัส
รอม มีหลายประเภทดังนี้
  1. PROM ( พีรอม ) คือหน่วยความจำที่ไม่สามารถแก้ไขข้อมูลที่บันทึกไว้ได้
  2. EPROM ( เอ็ป รอม ) เป็นหน่วยความจำที่สามารถลบข้อมูลหรือโปรแกรมใหม่ได้  หน่วยความจำนี้แบ่งย่อยได้อีก   2ประเภท คือ UV PROM และ EEPROM
  3. EEPROM ( เอ็ปอี รอม ) เป็นหน่วยความจำอ่านอย่างเดียวแบบโปรแกรมและลบได้
 Rom
ความแตกต่างระหว่าง Rom และ Ram
รอม เป็นหน่วยความจำบันทึกข้อมูลตายตัว ไม่สามารถปรับเปลี่ยนได้ แม้จะไม่มีกระแสไฟฟ้ามาเลี้ยง แต่ข้อมูลก็ยังอยู่ครบไม่หายไป
แรม เป็นหน่วยความจำที่เปรียบเสมือนสมุดจดบันทึก เป็นหน่วยความจำชั่วคราว ขยายความจุได้มาก แต่ข้อมูลจะหายไปเมื่อปิดเครื่องหรือไฟดับ
  

แรม (Ram) คืออะไร ? RAM ย่อมาจาก (Random Access Memory)

RAM ย่อมาจาก (Random Access Memory) เป็นหน่วยความจำหลักที่จำเป็น หน่วยความจำ ชนิดนี้จะสามารถเก็บข้อมูลได้ เฉพาะเวลาที่มีกระแสไฟฟ้าหล่อเลี้ยงเท่านั้นเมื่อใดก็ตามที่ไม่มีกระแสไฟฟ้า มาเลี้ยง ข้อมูลที่อยู่ภายในหน่วยความจำชนิดจะหายไปทันที หน่วยความจำแรม ทำหน้าที่เก็บชุดคำสั่งและข้อมูลที่ระบบคอมพิวเตอร์กำลังทำงานอยู่ด้วย ไม่ว่าจะเป็นการนำเข้าข้อมูล (Input) หรือ การนำออกข้อมูล (Output) โดยที่เนื้อที่ของหน่วยความจำหลักแบบแรมนี้ถูกแบ่งออกเป็น 4 ส่วน คือ
     1. Input Storage Area เป็นส่วนที่เก็บข้อมูลนำเข้าที่ได้รับมาจากหน่วยรับข้อมูลเข้าโดย ข้อมูลนี้จะถูกนำไปใช้ในการประมวลผลต่อไป
     2. Working Storage Area เป็นส่วนที่เก็บข้อมูลที่อยู่ในระหว่างการประมวลผล
     3. Output Storage Area เป็นส่วนที่เก็บผลลัพธ์ที่ได้จากการประมวลผล ตามความต้องการของผู้ใช้ เพื่อรอที่จะถูกส่งไปแสดงออก ยังหน่วยแสดงผลอื่นที่ผู้ใช้ต้องการ
     4. Program Storage Area เป็นส่วนที่ใช้เก็บชุดคำสั่ง หรือโปรแกรมที่ผู้ใช้ต้องการจะส่งเข้ามา เพื่อใช้คอมพิวเตอร์ปฏิบัติตามคำสั่ง ชุดดังกล่าว หน่วยควบคุมจะทำหน้าที่ดึงคำสั่งจากส่วน นี้ไปที่ละคำสั่งเพื่อทำการแปลความหมาย ว่าคำสั่งนั้นสั่งให้ทำอะไร จากนั้นหน่วยควบคุม จะไปควบคุมฮาร์ดแวร์ที่ต้องการทำงานดังกล่าวให้ทำงานตามคำสั่งนั้นๆ
Module ของ RAM
RAM ที่เรานำมาใช้งานนั้นจะเป็น chip เป็น ic ตัวเล็กๆ ซึ่งส่วนที่เรานำมาใช้เป็นหน่วยความจำหลัก จะถูกบัดกรีติดอยู่บนแผงวงจร หรือ Printed Circuit Board เป็น Module ซึ่งมีหลัก ๆ อยู่ 2 Module คือ SIMM กับ DIMM


SIMM หรือ Single In-line Memory Module
โดยที่ Module ชนิดนี้ จะรองรับ data path 32 bit โดยทั้งสองด้านของ circuit board จะให้สัญญาณ เดียวกัน
DIMM หรือ Dual In-line Memory Module
     โดย Module นี้เพิ่งจะกำเนิดมาไม่นานนัก มี data path ถึง 64 บิต โดยทั้งสองด้านของ circuited board จะให้สัญญาณที่ต่างกัน ตั้งแต่ CPU ตระกูล Pentium เป็นต้นมา ได้มีการออกแบบให้ใช้งานกับ data path ที่มากว่า 32 bit เพราะฉะนั้น เราจึงพบว่าเวลาจะใส่ SIMM RAM บน slot RAM จะต้องใส่เป็นคู่ ใส่โดด ๆ แผง เดียวไม่ได้
     Memory Module ปัจจุบันมีอยู่ 3 รูปแบบคือ 30-pin, 72-pin, 168-pin ที่นิยมใช้ในเวลานี้คือ 168-pin
ชนิดและความแตกต่างของ RAM
Dynamic Random Access Memory (DRAM)
     DRAM จะทำการเก็บข้อมูลในตัวเก็บประจุ (Capacitor) ซึ่งจำเป็นต้องมีการ refresh เพื่อ เก็บข้อมูล ให้คงอยู่โดยการ refresh นี้ทำให้เกิดการหน่วงเวลาขึ้นในการเข้าถึงข้อมูล และก็เนื่องจากที่มันต้อง refresh ตัวเองอยู่ตลอดเวลานี้เองจึงเป็นเหตุให้ได้ชื่อว่า Dynamic RAM
Static Random Access Memory (SRAM)
     จะ ต่างจาก DRAM ตรงที่ว่า DRAM ต้องทำการ refresh ข้อมูลอยู่ตลอดเวลา แต่ในขณะที่ SRAM จะเก็บข้อมูล นั้น ๆ ไว้ และจำไม่ทำการ refresh โดยอัตโนมัติ ซึ่งมันจะทำการ refresh ก็ต่อเมื่อ สั่งให้มัน refresh เท่านั้น ซึ่งข้อดีของมันก็คือความเร็ว ซึ่งเร็วกว่า DRAM ปกติมาก แต่ก็ด้วยราคาที่สูงว่ามาก จึงเป็นข้อด้อยของมัน

DRAM
คือ เมโมรี่แบบธรรมดาที่สุด ซึ่งความเร็วขึ้นอยู่กับค่า Access Time หรือเวลาที่ใช้ในการเอาข้อมูลในตำแหน่งที่เราต้องการออกมาให้ มีค่าอยู่ในระดับนาโนวินาที (ns) ยิ่งน้อยยิ่งดี เช่น ชนิด 60 นาโนวินาที เร็วกว่าชนิด 70 นาโนวินาที เป็นต้น รูปร่างของ DRAM เป็น SIMM 8 บิต (Single-in-line Memory Modules) มี 30 ขา DRAM ย่อมาจาก Dynamic Random Access Memory
Fast Page DRAM
ปกติแล้วข้อมูลใน DRAM จึงถูกเก็บเป็นชุด ๆ แต่ละชุดเรียกว่า Page ถ้าเป็น Fast Page DRAM จะเข้าถึงข้อมูลได้เร็วกว่าปกติสองเท่าถ้าข้อมูลที่เข้าถึงครั้งที่แล้ว เป็นข้อมูลที่อยู่ใน Page เดียวกัน Fast Page DRAM เป็นเมโมรี่ SIMM 32 บิตมี 72ขา (Pentium มีดาต้าบัสกว้าง 64 บิตดังนั้นจึงต้องใส่ SIMM ทีละสองแถวเสมอ)
EDO RAM
EDO Ram นำข้อมูลขึ้นมาเก็บไว้ใน Buffer ด้วย เพื่อว่า ถ้าการขอข้อมูลครั้งต่อไป เป็นข้อมูลในไบต์ถัดไป จะให้เราได้ทันที EDO RAM จึงเร็วกว่า Fast Page DRAM ประมาณ 10 % ทั้งที่มี Access Time เท่ากัน เพราะโอกาสที่เราจะเอาข้อมูลติด ๆกัน มีค่อนข้างสูง EDO มีทั้งแบบ SIMM 32 บิตมี 72 ขา และ DIMM 64 บิตมี 144 ขา คำว่า EDO ย่อมาจาก Extended Data Out
SDRAM
เป็นเมโมรี่แบบใหม่ที่เร็วกว่า EDO ประมาณ 25 % เพราะสามารถเรียกข้อมูลที่ต้องการขึ้นมาได้ทันที โดยที่ไม่ต้องรอให้เวลาผ่านไปเท่ากับ Access Time ก่อน หรือเรียกได้ว่า ไม่มี Wait State นั่นเอง ความเร็วของ SDRAM จึงไม่ดูที่ Access Time อีกต่อไป แต่ดูจากสัญญาณนาฬิกาที่ โปรเซสเซอร์ติดต่อกับ Ram เช่น 66, 100 หรือ 133 MHz เป็นต้น SDRAM เป็นแบบ DIMM 64 บิต มี 168 ขา เวลาซึ้อต้องดูด้วยว่า MHz ตรงกับเครื่องที่เราใช้หรือไม่ SDRAM ย่อมาจาก Sychronous DRAM เพราะทำงาน "sync" กับสัญญาณนาฬิกาบนเมนบอร์ด
SDRAM II (DDR)
DDR (Double Data Rate) SDRAM มีขา 184 ขา มีอัตราการส่งข้อมูลเป็น 2 เท่าของความเร็ว FSB ของตัว RAM คือ มี 2 ทิศทางในการรับส่งข้อมูล และมีความเร็วมากกว่า SDRAM เช่น ความเร็ว 133 MHz คูณ 2 Pipline เท่ากับ 266 MHz
RDRAM
RDRAM หรือที่นิยมเรียกว่า RAMBUS มีขา 184 ขา ทำมาเพื่อให้ใช้กับ Pentium4 โดยเฉพาะ(เคยใช้กับ PentiumIII และ Chipset i820 ของ Intel แต่ไม่ประสบผลสำเร็จเนื่องจากมีปัญหาเรื่องระบบไฟจึงยกเลิกไป) มีอัตราการส่งข้อมูลเป็น 4 เท่าของความเร็ว FSB ของตัว RAM คือ มี 4 ทิศทางในการรับส่งข้อมูล เช่น RAM มีความเร็ว BUS = 100 MHz คูณกับ 4 pipline จะเท่ากับ 400 MHz เป็นเมโมรี่แบบใหม่ที่มีความเร็วสูงมาก คิดค้นโดยบริษัท Rambus, Inc. จึงเรียกว่า Rambus DRAM หรือ RDRAM อาศัยช่องทางที่แคบ แต่มีแบนด์วิทด์สูงในการส่งข้อมูลไปยังโปรเซสเซอร์ ทำให้ความเร็วในการทำงานสูงกว่า SDRAM เป็นสิบเท่า RDRAM เป็นทางเลือกทางเดียวสำหรับเมนบอร์ดที่เร็วระดับหลายร้อยเมกกะเฮิร์ดซ์ มีแรมอีกชนิดหนึ่งที่ออกมาแข่งกับ RDRAM มีชื่อว่า Synclink DRAM ที่เพิ่มความเร็วของ SDRAM ด้วยการเพิ่มจำนวน bank เป็น 16 banks แทนที่จะเป็นแค่ 4 banks

Saturday, May 18, 2013

อุปกรณ์คอมพิวเตอร์

อุปกรณ์ หรือ คอมพิวเตอร์ฮาร์ดแวร์  หรือเรียกย่อว่า ฮาร์ดแวร์  เป็นคำที่ใช้อ้างอิงถึง ส่วนที่จับต้องได้ ของระบบคอมพิวเตอร์ ซึ่งไม่รวมถึงข้อมูล, ระบบการคำนวณ, และซอฟต์แวร์ ที่ป้อนชุดคำสั่งให้ฮาร์ดแวร์ทำการประมวลผล
ความจริง ขอบเขตที่แบ่งระหว่างฮาร์ดแวร์และซอฟต์แวร์ ไม่ได้ชัดเจน เพราะระหว่างกลางอาจจะมีเฟิร์มแวร์ ซึ่งเป็นซอฟต์แวร์ที่สร้างมาโดยเฉพาะ เพื่อฝังไว้ในฮาร์ดแวร์อยู่ด้วย โดยที่ผู้ใช้ทั่วไป ไม่จำเป็นต้องกังวลกับเฟิร์มแวร์เหล่านี้ เพราะเป็นส่วนที่โปรแกรมเมอร์ และวิศวกรคอมพิวเตอร์ เป็นผู้ดูแล
 
สถาปัตยกรรมของเครื่องคอมพิวเตอร์ส่วนบุคคล ประกอบด้วย
  • เมนบอร์ด, มาเธอร์บอร์ด เป็นศูนย์รวมของหน่วยประมวลผลกลาง และหน่วยความจำหลัก พร้อมส่วนเชื่อมต่อสำหรับต่ออุปกรณ์ภายนอกเพิ่มเติม
  • ส่วนจ่ายไฟ (พาวเวอร์ซัพพลาย) เป็นอุปกรณ์ที่แปลงไฟ และควบคุมระดับไฟฟ้า
  • ส่วนเก็บข้อมูล ประกอบด้วยส่วนควบคุมการทำงาน และติดต่อกับอุปกรณ์เก็บข้อมูล เช่น แรม, ฟลอปปี้ดิสก์, ดีวีดีรอม, ซีดีรอม, เทป, ฮาร์ดดิสก์ ฯลฯ
  • ส่วนควบคุมการแสดงผล (การ์ดจอ) สำหรับควบคุมและส่งภาพไปยังหน้าจอ
  • ส่วนควบคุมการติดต่อกับอุปกรณ์ภายนอก โดยรับ/ส่งข้อมูลผ่านทางช่องสัญญาณ เช่น พอร์ตขนาน, พอร์ตอนุกรม, PS/2, ยูเอสบี, ไฟร์ไวร์ ฯลฯ
  • ส่วนควบคุมการติดต่อกับอุปกรณ์เสริมภายใน เช่น ISA, PCI, AGP, PCI-X, PCI-E ฯลฯ
ส่วนอุปกรณ์ หมายถึง ชิ้นส่วนเครื่องคอมพิวเตอร์ และอุปกรณ์รอบข้างที่เกี่ยวข้องต่างๆ
ซึ่งประกอบด้วยส่วนที่สำคัญคือ หน่วยประมวลผลกลาง หน่วยความจำหลัก หน่วยรับข้อมูล หน่วยแสดงผล และหน่วยเก็บข้อมูลสำรอง
1. หน่วยประมวลผลกลาง (Central Processing Unit) หน่วยประมวลผลกลางหรือที่เรียกสั้น ๆ ว่า ซีพียู (CPU) เป็นหน่วยที่เปรียบเสมือนสมองของระบบคอมพิวเตอร์ และเป็นหน่วยที่มีความซับซ้อนมากที่สุด ส่วนประกอบต่าง ๆ ในหน่วยประมวลผลกลางเป็นตัวกำหนดความเร็วของเครื่องคอมพิวเตอร์ หน่วยประมวลผลกลางรุ่นใหม่ ๆ จะมีขนาดเล็กลงในขณะที่มีความเร็วเพิ่มขึ้น
2. หน่วยความจำหลัก (Main Memory Unit) เป็นอุปกรณ์ที่ใช้ในการจดจำข้อมูล และโปรแกรมต่าง ๆ ที่อยู่ระหว่างการประมวลผลของคอมพิวเตอร์ บางครั้งอาจเรียกว่า หน่วยเก็บข้อมูลหลัก (Primary storage) สามารถแบ่งออกได้เป็น 2 ประเภท คือ
2.1 หน่วยความจำหลักแบบอ่านได้อย่างเดียว (Read Only Memory)
2.2 หน่วยความจำหลักแบบแก้ไขได้ (Random Access Memory)
3. หน่วยรับข้อมูล (Input Unit) ทำหน้าที่รับข้อมูลจากผู้ใช้เข้าสู่หน่วยความจำหลัก ปัจจุบันมีสื่อต่าง ๆ ให้เลือกใช้ได้มากมาย แบ่งเป็นประเภทต่าง ๆ ได้ดังนี้
3.1 อุปกรณ์แบบกด (Keyed Device) แป้นพิมพ์ (Keyboard) แบ่งเป็น 4 กลุ่มด้วยกันคือ แป้นอักขระ (Character Keys) แป้นควบคุม (Control Keys) แป้นฟังก์ชัน (Function Keys) แป้นตัวเลข (Numeric Keys)
3.2 อุปกรณ์ชี้ตำแหน่ง (Pointing Device) เช่น เมาส์ (Mouse) ลูกกลมควบคุม (Track ball) แท่งชี้ควบคุม (Track Point) แผ่นรองสัมผัส (Touch Pad) จอยสติก (Joy stick) เป็นต้น
3.3 จอภาพระบบไวต่อการสัมผัส (Touch-Sensitive Screen) เช่น จอภาพระบบสัมผัส (Touch screen)
3.4 ระบบปากกา (Pen-Based System) เช่น ปากกาแสง (Light pen) เครื่องอ่านพิกัด (Digitizing tablet)
3.5 อุปกรณ์กวาดข้อมูล (Data Scanning Device) เช่น เอ็มไอซีอาร์ (Magnetic Ink Character Recognition - MICR) เครื่องอ่านรหัสบาร์โค้ด (Bar Code Reader) สแกนเนอร์ (Scanner) เครื่องรู้จำอักขระด้วยแสง (Optical Character Recognition - OCR) เครื่องอ่านเครื่องหมายด้วยแสง (Option Mark Reader -OMR) กล้องถ่ายภาพดิจิตอล (Digital Camera) กล้องถ่ายทอดวีดีโอดิจิตอล (Digital Video)
3.6 .อุปกรณ์รู้จำเสียง (Voice Recognition Device) เช่น อุปกรณ์วิเคราะห์เสียงพูด (Speech Recognition Device)
4. หน่วยแสดงผล (Output Unit) ทำหน้าที่แสดงผลลัพธ์จากคอมพิวเตอร์ โดยมากจะแบ่งออกเป็น 2 ประเภท
4.1.หน่วยแสดงผลชั่วคราว (Soft Copy) หมายถึงการแสดงผลออกมาให้ผู้ใช้ได้รับทราบในขณะนั้น แต่เมื่อเลิกการทำงานหรือเลิกใช้แล้วผลนั้นก็จะหายไป ไม่เหลือเป็นวัตถุให้เก็บได้ ถ้าต้องการเก็บผลลัพธ์นั้นก็สามารถส่งถ่ายไปเก็บในรูปของข้อมูลในหน่วยเก็บข้อมูลสำรอง เพื่อให้สามารถใช้งานได้ในภายหลัง
4.2 หน่วยแสดงผลถาวร (Hard Copy) หมายถึงการแสดงผลที่สามารถจับต้อง และเคลื่อนย้ายได้ตามต้องการ มักจะออกมาในรูปของกระดาษ
5. หน่วยเก็บข้อมูลสำรอง (Secondary Storage Unit) เนื่องจากแรมเป็นหน่วยความจำที่ไม่ได้เก็บข้อมูลอย่างถาวร ถ้าปิดเครื่องหรือไฟดับข้อมูลก็หายไป ดังนั้นถ้าผู้ใช้มีข้อมูลอยู่ในแรมก็จะต้องทำการจัดเก็บข้อมูล โดยย้ายข้อมูลจากหน่วยความจำไปไว้ในหน่วยเก็บข้อมูลสำรอง เนื่องจากสามารถเก็บข้อมูลได้อย่างถาวร เก็บข้อมูลเป็นจำนวนมากได้ แต่ความเร็วในการอ่านและบันทึกข้อมูลของหน่วยเก็บข้อมูลสำรองจะต่ำกว่าแรมมาก ดังนั้นจึงควรทำงานให้เสร็จก่อนจึงย้ายข้อมูลนั้นไปไว้ในหน่วยเก็บข้อมูลสำรอง
6. ส่วนประกอบอื่น ๆ
6.1 แผงวงจรหลัก (Main Board)
6.2 ส่วนเชื่อมต่ออุปกรณ์ (Peripheral Inteface)
6.3 อุปกรณ์พีซีการ์ด (PC-Card)
6.4 อุปกรณ์สื่อสารข้อมูล (Data communication device)
6.5 ยูพีเอส (UPS)